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Abstract: Speckle noise in optical coherence tomography (OCT) impairs both the visual 
quality and the performance of automatic analysis. Edge preservation is an important issue for 
speckle reduction. In this paper, we propose an end-to-end framework for simultaneous 
speckle reduction and contrast enhancement for retinal OCT images based on the conditional 
generative adversarial network (cGAN). The edge loss function is added to the final objective 
so that the model is sensitive to the edge-related details. We also propose a novel method for 
obtaining clean images for training from outputs of commercial OCT scanners. The results 
show that the overall denoising performance of the proposed method is better than other 
traditional methods and deep learning methods. The proposed model also has good 
generalization ability and is capable of despeckling different types of retinal OCT images. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1 Introduction 
Optical coherence tomography (OCT) generates cross-sectional images of ocular biological 
tissue in micron resolution [1] and has become an essential tool for imaging of retina. Speckle 
noise, caused by multiple forward and backward scattering of light waves, is the main quality 
degrading factor in OCT images. The presence of speckle noise often obscures subtle but 
important morphological details and thus is detrimental to clinical diagnosis. It also affects 
the performance of automatic analysis methods intended for objective and accurate 
quantifications. Although the imaging resolution, speed and depth of OCT has been greatly 
improved over the last two decades, speckle noise, as an intrinsic problem to the imaging 
technique, has not been well solved. The most common despeckling approach adopted in 
commercial scanners is Bscan averaging. A high quality image can be obtained by averaging 
registered multiple Bscans acquired from the same position. However, this approach is 
currently impractical for 3D scans due to the long acquisition time for overlapping Bscans. In 
this paper, we focus on another category of speckle reduction techniques, which utilize 
software-based image processing algorithms to reconstruct an enhanced image. 

A large number of image processing algorithms for OCT denoising have been proposed so 
far, which can be roughly divided into several categories with some overlapping: the partial 
differential equation (PDE) based methods such as anisotropic diffusion filtering [2,3], block 
matching based methods such as non-local means (NLM) [4,5] or block matching and 3D 
filtering (BM3D) [6], sparse transform based methods based on wavelets [7,8], curvelets [9], 
or dictionary learning [10,11], statistical model based methods [12–14], and low rank 
decomposition based methods [15,16]. 
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Though the main aim of OCT denoising is to reduce the grainy appearance in 
homogeneous areas, another important issue is preservation of image details, especially the 
edges, because edges are the most vital information needed for both visual inspection and 
automatic analysis such as segmentation. As the noise level is high in OCT images, many 
spatial filters tend to oversmooth the image, resulting in reduced contrast at the edges. Block 
matching based methods can result in edge distortions caused by disagreement of the edges in 
different blocks. Transform-based methods also tend to produce artifacts with the shape of 
transform basis near the edges. 

Recently, deep learning provides new ideas for image denoising. Mao et al. [17] proposed 
very deep convolutional encoder-decoder networks (RED-Net) with symmetric skip 
connections. Tai et al. [18] proposed a persistent memory network (MemNet). Zhang et al. 
[19] proposed residual learning of deep convolutional neural network (DnCNN) for natural 
image denoising. The network was designed to predict the residual image from the noisy 
input. Cai et al. [20] borrowed the idea, improved the network structure with residue module 
and applied it to OCT image denoising. However, in all these works, the additive noise 
assumption is used. Therefore these models are not most suitable for speckle noise in OCT 
images. 

In this paper, we aim to remove speckle noise in Bscans from 3D OCT volumes exported 
from commercial retinal OCT scanners. Figure 1 shows the flowchart of the proposed 
method. We treat image denoising as an image-to-image translation problem, and propose a 
method based on conditional generative adversarial network (cGAN) [21] to achieve the goal. 
Trained by noisy images and corresponding high quality images obtained by registration and 
averaging, and with the competition of the generator and the discriminator, the network is 
able to learn the underlying clean structures of retinas. To our best knowledge, it is the first 
time that the image-to-image cGAN network is applied to OCT speckle noise reduction. The 
contributions of our work are listed as follows. 

· We introduce a new edge loss into the objective function of cGAN and make the 
network sensitive to the edge information, thus achieving good edge preservation 
while smoothing the homogeneous areas. 

· We propose a method for obtaining high quality training images that works for common 
users of commercial OCT scanners. 

· By preprocessing of the training images, we make the deep network an end-to-end 
framework that achieves simultaneous speckle noise reduction and contrast 
enhancement. 

· By data augmentation, we make the deep network capable of handling both OCT image 
from normal and pathological subjects, and also data from different types of 
scanners. 

2 Methods 

2.1 Overview of conditional adversarial networks 

The conditional adversarial networks have been proved a good image-to-image translation 
model for tasks such as label-to-photo conversion, colorization, and semantic segmentation 
[21]. Different from the original GAN which learn a mapping from random noise to output 
image, the cGAN generates the output image conditioned on an observed image. cGAN 
consists of two modules with opposite goals: the generator G that extracts features of the 
observed image x and produces the corresponding fake image yfake, and the discriminator D 
that classifies between real pairs (x, yreal) and fake pairs (x, yfake). The model structure is 
illustrated in Fig. 2. Essentially, cGAN aims to learn a mapping from x and random vector z 
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second term is the expectation calculated over all training observed images and random 
vectors. 

In training, G tries to minimize the objective against D that tries to maximize it, resulting 
in the following optimization: 

 ( )* arg min max ,cGANG D
G L G D=  (2) 

where *G represents the resulted optimized generator. 
Previous approaches to cGAN have found it beneficial to combine the cGAN’s objective 

with a traditional loss, such as L1 or L2 distance, so that the generated image is more similar 
to the ground truth. L1 distance encourages errors that are sparsely distributed in space while 
L2 distance encourages errors that are uniformly distributed in space. Therefore L1 distance 
results in less blurring than L2 distance [21]. 

 ( ) ( ) ( ) ( )1 , ~ , , ~ 1
,

data zL x y p x y z p zL G E y G x z = −   (3) 

By adding the L1 distance, the optimization becomes 

 ( ) ( )*
1arg min max ,cGAN LG D

G L G D L Gα= +  (4) 

where α is a weighting parameter. 
In this paper, we further modified the objective function by adding a loss that is explicitly 

related to the edge information, to deal with the difficulty of edge-preserving while 
despeckling. The edge loss is defined as follows: 
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where i and j represent coordinates in the longitudinal and lateral direction in the B-scan 
image. The edge loss measures the edge similarity between generated image and the ground 
truth, which is inspired by the edge preservation index (EPI). As the retina has a layered 
structure, the longitudinal gradient is more important than the lateral one. Therefore, 
considering the simplicity of the model, only longitudinal gradient is used in calculating the 
edge loss. 

Thus the final optimization is performed as: 

 ( ) ( ) ( )*
1arg min max ,cGAN L EdgeG D

G L G D L G L Gα β= + +  (6) 

where α  and β  are the weighting parameters. 

2.3 Implementation of cGAN 

In this paper, the “U-Net” [22], a kind of encoder-decoder structure with skip connections 
between symmetric layers in the encoder and decoder stacks, is used as the main framework 
of the generator, and PatchGAN, that identifies real or fake pairs based on patches in an 
image, is adopted as the discriminator architecture. Modules of the form Convolution-
BatchNorm-ReLU [23] are the basic components of both generator and discriminator. 
Detailed structures are given in the Appendix. 

In view of our task of despeckling OCT images, the despeckled OCT image shares the 
structure information with the corresponding noisy OCT image, which requires the structure 
of the output image of the generator remains aligned with that of the input image. This is a 
mapping problem from a high resolution input grid to a high resolution output grid. 
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Symmetric skip connections of U-Net provides an effective solution for the problem, which 
helps to produce the despeckled OCT image with more details due to the combination of low-
level and high-level information. 

In general, the discriminator in GANs outputs the probability that its input is real based on 
the whole image. Different from traditional discriminators, PatchGAN tries to identify 
whether each p × p patch in an image is real or fake. Such a discriminator regards the image 
as a Markov random field assuming independence between pixels separated by more than a 
patch diameter. The discriminator is run convolutionally across the whole image, averaging 
all responses of patches to achieve the final probability. One of the advantages of PatchGAN 
is that it can be applied to arbitrary-size images. 

At training time, the Adam solver is applied to optimize the two adversarial networks. We 
adopt the standard approach of training GANs: optimization is carried out on the 
discriminator and the generator alternately [24]. At testing time, only the trained generator is 
used. 

2.4 Ground truth for training 

For deep network training, the input pairs of original noisy image and clean ground truth 
image are needed. However, for OCT image despeckling, there's no ground truth image 
readily available. As mentioned, good despeckling results can be obtained by averaging 
Bscans repeatedly acquired at the same location. Though commercial scanners such as 
Topcon DRI-1 offer such scanning protocol, it only outputs the final high quality image. The 
averaging calculation is completed by the proprietary software,and the raw noisy image is not 
available to common users. Here we propose an alternative way of obtaining training images 
pairs that is practical for any commercial OCT scanner users. The high quality images are 
obtained through registration and averaging of Bscans from multiple OCT volumes. 

M 3D OCT volumes are obtained repeatedly from the same normal eye, with minimal eye 
movement between different acquisitions. One volume is randomly picked as the target image 

and denoted as 1V , while other volumes are denoted as 2 MV V . Let m

kB denote the kth Bscan 

in mV . For a certain Bscan 1

iB in the target volume, from all volumes, put the 2N+1 Bscans 

with indices closest to i into a set: { | 1, , , min[max(1, ), 2 ],m

kB m M k i N K N= = − −
1,max[2 1,min( , )]} { }iN i N K B+ + − , where K represents the total number of Bscans in one 

OCT volume. Then all Bscans in this set are registered to 1

iB
 
using affine transformation. 

From the (2N+1)M-1 registered images, L images with the highest mean structural similarity 

index (MSSIM) [25] scores to 1

iB  are selected and averaged together with 1

iB . Then 1

iB  and 

the averaging result forms a noisy-clean image pair. Repeat this for all Bscans in the target 
volume, and we have a whole set of training samples at different locations of the retina. This 
procedure can be repeated for multiple eyes to obtain a larger training set. 

In this method, we assume Bscans in a 3D volume within a small range share similar 
retinal structures. Registration is needed to remove possible misalignment in structure caused 
by eye movement or slight difference in scanning locations between different scans. The 
MSSIM measure ensures the best aligned images are averaged, to prevent blurring in the 
averaged results. The registration is performed using the imregister function of MATLAB 
(Mathworks, version 2012a and later). It is a multi-resolution registration method based on 
pixel intensities. The transform parameters are optimized by minimizing the mean square 
error of pixel intensities between the target image and the transformed image, using the 
gradient descent method. An image pyramid is built with decreased resolution by a factor of 2 
in each dimension. The parameters are first optimized at the coarsest level of the pyramid and 
then successively refined on the next level, until getting back to the original full resolution 
image. In our experiments, the number of pyramid levels was set to 3. For gradient descent 
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scanners. The data came from both normal and pathological eyes. Table 1 listed the 
specifications of the 2 groups of training data volumes and 9 testing data volumes. The 
pathological data were from patients with central serous chorioretinopathy (CSC) or 
pathological myopia (PM). Intra-retinal fluids, neurosensory retinal detachment (NRD) or 
pigment epithelial detachment (PED) may appear in some Bscans. For each volume, 4 
Bscans, two in the center and two in the peripheral area, were selected for quantitative 
evaluation. 

Table 1. Specifications of training and testing OCT data 

 Scanner 

Center 
wave- 
length 
(nm) 

Longitudinal
resolution 
in tissue 

(μm) 

Lateral 
resolution
in tissue 

(μm) 

Bscan 
size 

(pixels/mm) 

Pixel size 
(μm) 

Location 
Normal/ 

Pathological

training 1 Topcon DRI-1 1050 20 8 512 × 992/6 × 2.6 11.72 × 2.6 macula Normal 

training 2 Topcon 2000 840 20 5~6 512 × 885/6 × 2.3 11.72 × 2.6 macula Normal 

testing 1 

Topcon DRI-1 1050 20 8 

512 × 992/6 × 2.6 11.72 × 2.6 macula Normal 

testing 2 
512 × 992/12 × 

2.6 
23.44 × 2.6 

macula 
+ ONH 

Normal 

testing 3 512 × 992/6 × 2.6 11.72 × 2.6 macula 
Pathological

(CSC) 

testing 4 
Topcon 1000 840 20 6 

512 × 480/6 × 
1.68 

11.72 × 3.5 macula Normal 

testing 5 
512 × 480/6 × 

1.68 
11.72 × 3.5 macula 

Pathological
(CSC) 

testing 6 
Topcon 2000 840 20 5~6 

512 × 885/6 × 2.3 11.72 × 2.6 macula Normal 

testing 7 512 × 885/6 × 2.3 11.72 × 2.6 ONH Normal 

testing 8 
Zeiss 

Cirrus 4000 
840 15 5 

512 × 1024/6 × 2 11.72 × 1.95 macula 
Pathological

(PM) 

testing 9 512 × 1024/6 × 2 11.72 × 1.95 macula 
Pathological

(CSC) 

 
All OCT data were uncompressed raw data exported from the scanners. For all 

acquisitions, we chose the 3D scanning mode with maximum number of Bscans provided by 
the scanner. In these modes, the output Bscans were the original acquisition, not averaged 
ones over several repetitions. 

The study was approved by the Institutional Review Board of Soochow University, and 
informed consent was obtained from all subjects. 

3.2 Implementation details 

Data augmentation was used to allow the model to learn different characteristics of the testing 
data. Flipping in the lateral direction was used to simulate the symmetry of right and left eye. 
Different scaling factors were applied to simulate the four types of pixel size (geometric size 
of the Bscan divided by the number of pixels in corresponding dimensions) of testing data. 
Rotation was used to simulate different inclination of the retina in the OCT image. Non-rigid 
transformation was used to simulate the deformation caused by pathologies. These processing 
are applied randomly, and the training data is augmented with a factor of two. 

In the experiment, the Adam solver with initial learning rate 2e-4 and momentum 0.5 was 
applied to optimize the two adversarial networks. The weighting parameters are selected as 

100α =  and 1β = , so that the L1 loss and edge loss are of the same order of magnitude. As 

tested, too large weight for the edge loss might make the training difficult to converge. The 
batch size was set as 1 and the number of training epochs was set as 100. The proposed 
method were coded in Python based on Tensorflow and trained using the NVIDIA GTX Titan 
X GPU with 12G memory. 
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where max(I) represents the maximum pixel intensity of the image I, and σb is the standard 
deviation of the background region. 

3.3.2 Contrast-to-noise ratio (CNR) 

CNR is a measure of the contrast between the region of signal and the noisy background 
region in the image. CNR of the i-th signal region is calculated as: 

 10 2 2
10 log i b

i

i b

CNR
μ μ

σ σ

 −
 =
 + 

 (8) 

where μi and σi denote the mean and standard deviation of i-th signal region in the image, 
while μb and σb denote the mean and standard deviation of the background region. 

In our experiments, the average CNR is computed over the 3 signal ROIs. 

3.3.3 Equivalent number of looks (ENL) 

ENL is commonly used to measure smoothness of the homogeneous region in the image. 
ENL over i-th ROI in an image can be calculated as: 

 
2

2
i

i
i

ENL
μ
σ

=  (9) 

where μi and σi denote the mean and standard deviation of i-th signal ROI in the image. 
In our experiments, the average ENL is computed over the 3 signal ROIs. 

3.3.4 Edge preservation index (EPI) 

EPI is a performance measure that reflects the extent of maintaining details of edge in the 
image after denoising. EPI in the longitudinal direction is defined as: 

 
( ) ( )
( ) ( )

1, ,

1, ,

d di j

o oi j

I i j I i j
EPI

I i j I i j

+ −
=

+ −
 
 

 (10) 

where Io and Id represent the noisy image and the denoised image, while i and j represent 
coordinates in the longitudinal and lateral direction in the image. This index may not be an 
accurate indicator of edge-preservation if calculated over the entire image, since after 
denoising, the gradient will become smaller in homogeneous regions. Therefore we only 
calculate the sums in (9) in the neighborhood of image boundaries. In our experiments, the 
neighborhood was set as a band with height of 7 pixels centered at the boundaries shown in 
Fig. 4. 

4 Results 
Figure 5 shows denoised Bscans from the 9 test data obtained using training data 1, 
corresponding to those in Fig. 4. By visual inspection, we can see that the proposed edge-
sensitive cGAN works well for the data with different resolution, obtained at different retinal 
locations, and both for normal and pathological retina. The retinal structures are preserved 
well while speckle noise is suppressed. The contrast between layers is also enhanced. After 
denoising, the background is homogeneous and almost black. The highest pixel intensities 
occur at the RPE layer. For Bscans in which the choroid is also visualized, such as in Fig. 
5(a)(b)(c)(f)(g), both the capillary and the large vessels can be observed much more clearly. 

In order to further evaluate the effectiveness of the proposed edge sensitive cGAN, we 
design three groups of comparative experiments. The first group is aimed at comparing 
different objective functions. The second group studies the performance achieved by different 
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STROLLR all have artifacts inside the retinal layers and near the boundaries. For BM3D, the 
background regions are not homogeneous. For K-SVD, the results in Fig. 8(e) is 
oversmoothed with many image details blurred, which is the reason of the high SNR and 
ENL, and also result in low EPI. However, the results in Fig. 9(e) is under-smoothed, which 
might be caused by the difficulty of dictionary learning from the low quality image. The 
result of MAP in Fig. 8(f) is under-smoothed while in Fig. 9(f) is a bit oversmoothed. This 
might be caused by the unstable estimation of speckle parameters for different images. 
Moreover, the background noise is not removed well and the contrast is low. The results of 
DnCNN present vertical artifacts, and it almost fails for testing data 8. This shows the poor 
generalization ability of the network, probably due to limited training samples. The results of 
ResNet have distortions at the edges, and the contrast between layers is lower than that of the 
proposed method. The proposed method with training data 1 obtains good denoising results 
for testing data 1. Especially, among all the methods compared, it best recovers the thin layer 
above the RPE complex, known as external limiting membrane (ELM), which can be viewed 
more clearly in the zoomed cropped image. For testing data 8, the result is a bit blurred, but 
still better than other methods. Therefore in summary, combining both subjective and 
objective evaluation criteria, the proposed edge-sensitive cGAN can obtain best results among 
the methods compared. With training data 1, it improved the SNR, CNR and ENL by 87%, 
116% and 285%, respectively, with respect to the original image. While many denoising 
methods reduce the EPI, it improved the EPI by 6%, which means the edges are enhanced. 
With training data 2, it improved the SNR, CNR and ENL by 127%, 120% and 265%, 
respectively, with respect to the original image. The mean EPI is comparative to the original 
image, indicating that the edges are mostly preserved. 

Table 3. Evaluation metrics in average for different denoising methods. 

 SNR CNR ENL EPI 

Original 26.50±1.04 4.55±0.80 34.81±12.71 1.00±0.00 

NLM[26] 44.56±2.88 6.11±1.44 63.56±43.67 1.04±0.09 

BM3D[27] 34.80±1.76 8.36±0.80 111.15±46.15 0.81±0.10 

STROLLR[28] 41.86±2.09 8.18±1.41 123.91±98.29 0.80±0.09 

K-SVD[8] 50.07±2.12 9.24±1.87 260.58±326.15 0.79±0.13 

MAP[14] 31.73±0.73 7.33±1.28 128.44±54.76 0.75±0.09 

DnCNN[19] 37.38±5.82 7.26±1.24 59.13±13.27 0.78±0.11 

ResNet[20] 35.81±3.85 8.85±1.26 115.96±48.49 0.86±0.09 

Proposed 
(training 1) 

49.57±5.01 9.85±1.02 133.96±60.11 1.06±0.18 

Proposed 
(training 2) 

60.09±8.00 10.01±0.87 126.91±46.99 1.01±0.13 

5. Discussion and conclusions 
In this paper, we propose an end-to-end deep learning framework that achieves simultaneous 
speckle reduction and contrast enhancement for retinal OCT images. The method is based on 
the image-to-image cGAN structure with a new edge-sensitive objective function. Unlike 
previous deep networks proposed for denoising [17–20] which try to estimate the noise 
residue from the noisy input, the cGAN learns the mapping from the noisy image to the clean 
image through the competition of generator and discriminator, and thus is not limited by the 
additive noise assumption. By introduction of the edge loss function, the method achieves a 
balanced performance in speckle reduction and structure preservation. 

A novel method is proposed for obtaining the ground truth images based on multiple 
volumetric scans of the same eye, which is easy to implement for users of commercial 
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clinicians. Secondly, as OCT despeckling acts as the preprocessing step for automatic OCT 
image analysis, we will study how the performance of tasks such as segmentation is improved 
by the proposed despeckling method. 

We don’t list the time cost of each comparative methods here because it is unfair to 
compare other methods run on CPU or even with MATLAB codes that are not optimized in 
efficiency with the deep learning methods run on GPU. Still, the testing stage of deep 
learning methods has been proved very fast. The proposed method only requires an average 
of 0.22 seconds for denoising one Bscan, which can readily meet the real-time demand of 
clinical practice. 

In conclusion, we have proposed an efficient and effective method that aims for speckle 
noise reduction in 3D OCT volumes exported from commercial retinal OCT scanners. The 
method achieves speckle noise suppression, edge preservation and contrast enhancement 
simultaneously. This method can be also extended to enhancement of other medical image 
modalities such as ultrasound image and low-dose CT image. 

Appendix: Detailed structures of cGAN 
The overall structure of U-shape generator is illustrated in Fig.10. It is a kind of encoder-
decoder structure with symmetric skip connections. All convolution and deconvolution layers 
apply 4×4 spatial filters with stride 2. Each layer adopts BatchNorm except the first 
convolutional layer of the encoder. All ReLUs in the encoder are leaky with slope 0.2, while 
those in the decoder are not. The random noise z is implicitly implemented as dropout with 
rate 0.5, i.e., randomly dropping some outputs by the probability of 0.5, in the first three 
layers of the decoder. The dropout can also prevent overfitting effectively during training. 
Tanh is used as the activation function of the last layer in the decoder. 

The discriminator architecture called PatchGAN is shown in Fig. 11. PatchGAN inputs 
real pairs or fake pairs, and produce the corresponding outputs. It has five convolution layers. 
All ReLUs in the first four layers are leaky with slope 0.2. The middle three layers adopt 
BatchNorm. 4×4 spatial filters with stride 2 are applied in the first three layers except for 
those in last two layers with stride 1. For this design, the size of PatchGAN’s receptive field, 
i.e., the size of the patch p is set as 70, which makes PatchGAN have fewer parameters and 
run faster than traditional discriminators and still produce high quality results [21]. Sigmoid is 
used as the activation function of the last layer to achieve the purpose of identification. In the 
final 62×62 image, each pixel represents the probability that the corresponding 70×70 patch 
in the input is identified as real. 
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